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For the vibration analysis of built-up structures traditional point-like connections cannot
be applied where the interface is large and the wavelength is small. In these situations the
spatially distributed wave"eld has to be accounted for, whereby the "eld properties
associated with the interface (i.e., velocity, force) have to be considered to be continuous over
a surface or, for a one-dimensional contact, along a line. Due to the perceived complexity of
these distributions it is most common for analyses to employ a numerical technique which,
whilst e$cient as a methodology, is limited in that little is revealed about the physics of the
system. The solutions can therefore be rather esoteric and in conjunction with design this
makes the techniques cumbersome to use. As a move towards overcoming the problem the
work presented considers a simpli"ed analytical approach from which a model of a box-like
structure is obtained. The basis of the approach is to consider the spatial properties of
distributed forces in terms of their Fourier components and then hypothesize that the zero
order, i.e., the uniform component, is dominant. In this way, the true spatial characteristics
of the forces are retained but in a reduced and elementary form. This greatly simpli"es the
modelling. For the box-like structure, supported by an in"nite plate-like recipient, a
prediction of the vibratory power is considered and qualifying results established.

( 2000 Academic Press
1. INTRODUCTION

In many installations, machinery is mounted upon supports which have a box-like structure
and the wavenumber condition is such that the force and velocity "elds are spatially
distributed along the plate interfaces. In this situation each face of the box supports
a wave"eld and, with respect to an analysis of the dynamic response, neither point-like nor
rigid-body simpli"cations are applicable. Without these simpli"cations, the analysis
becomes extensive and the analyst resorts, most often, to computer-based numerical
techniques. Whilst as a strength these techniques o!er an e$cient methodology, one
inherent cost is that they reveal little about the physics of the system. Consequently, they
o!er only a limited understanding of the structural behaviour. The importance of this is
that without physical insight the forthcoming solution is relevant only to the particular
system being studied and cannot be immediately extended to aid the analysis of another,
even related, system. Numerical techniques in conjunction with engineering design often
necessitate, therefore, many repeated &test' calculations and the work can become rather
capricious. With this in mind the development of an analytical model through which an
understanding of the structural behaviour can be accorded is considered most useful.
sNow at, Institut fuK r Technische Akustik, Technische UniversitaK t Berlin, 10587 Berlin, Germany.
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As a move towards this goal it is recognized that where a box consists of four side-walls
and a top-plate, a sub-study can be resolved as the vibrational response of a single side-wall
subjected to an arbitrary force distributed along its upper edge. Whilst in the context of
a box structure it is possible for this force to excite both #exural and in-plane motion work
by Fulford and Petersson [1] details that where the thicknesses of the side-wall and the
top-plate di!er by a factor of two, the dominating transmission path via the side-wall is
governed by the in-plane components. Under this condition the arbitrary force excitation at
the top edge can, with little compromise to the applicability of the model, be considered to
have a translational component only.

Thence for a side-wall of width ¸ in co-ordinate direction x, excited along its upper edge
by a distributed, in-plane, translational force only, the total complex power is given [2] as
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where the active power input to the side-wall,=
top

, is readily obtained by taking the real
part. A list of symbols is given in Appendix B.

When both the real and imaginary components of the distributed force are considered to
comprise a uniform component equal to their respective spatial averages together with
a spatially varying, complex component such that
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an alternative form of equation (1) is obtained as
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When f U(x) and f U (x) #uctuate, with x, about zero, their spatial integrals tend to be small in
comparison with those associated with f U

av
and f W

av
. Under these conditions, equation (1)

reduces to
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Accordingly it can be hypothesized that, for a practically interesting range of Helmholtz
numbers, the distributed force has a dominant uniform component. Hence, a reliable
estimate of the power would follow from substituting the uniform component for the &&true''
spatially varying force distribution. The reasoning leading to equation (4) implies, of course,
that to test the hypothesis any physically conceivable force distribution is admissible.

The signi"cance of the hypothesis is that it permits the spatial attributes of the force in the
line integral to be encompassed using only a magnitude &&scaling'' component. In turn this
greatly simpli"es the mathematics so that equation (1) is reduced to equation (4). Moreover,
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a uniform distribution in the spatial domain is equivalent to the nought component in the
wavenumber domain such that, by the same argument, when the response of the side-wall is
expressed as a summation of Fourier components a reliable estimate of the power is
forthcoming using only the zeroth order term.

2. POWER TRANSMISSION FOR A SIDE-WALL

For in-plane motion the wave"eld in any structure comprises both longitudinal and shear
waves,
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where / represents the dilatational part of the "eld and t the rotational. The potential and
shear functions [3] are de"ned as
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respectively. The longitudinal and shear wave speeds, c
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are given by
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when a thin plate is assumed so that the state of stress is plane.
If the side-wall is in"nite in length, a solution in the wavenumber domain can be found by

realizing that along both the upper and lower edges, the longitudinal and shear waves are
coupled together through a common trace wavenumber k. Assuming harmonic motion, the
solutions to equations (5) and (6) become
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Application of equations (7) and (8), together with Hooke's law, yields expressions for the
stresses in the plate,

p
y
(k)"GAD#2G

k2
(

k2
L
B e*k(yA

1
#AD#2G

k2
(

k2
L
B e~*k(yB

1
!

4Gkkt
k2
T

e*ktyA
2

#

4Gkkt
k2
T

e~*ktyB
2H e*kx, (15)

p
y
(k)"GAD#2G

k2

k2
L
B e*k(yA

1
#AD#2G

k2

k2
L
B e~*k(yB

1
#

4Gkkt
k2
T

e*ktyA
2

!

4Gkkt
k2
T

e~*ktyB
2H e*kx, (16)

q
w
(k)"G

!2Gkk
(
e*k(y

k2
L

A
1
#

2Gkk
(
e~*k(y

k2
L

B
1
#

2G(k2!k2t)e*kty

k2
T

A
2

#

2G(k2!k2t)e~*kty

k2
T

B
2H e*kx, (17)

where the time dependence has been omitted for brevity.
Prescribed boundary conditions at the upper and lower edges of the side-wall (herein

a free condition) enable the unknowns in these equations (A
1
, B

1
, A

2
, B

2
) to be determined.

The wave mobility of an in"nite side-wall, >s
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Based upon the in"nite case, the mobility of a "nite side-wall can be obtained via the
method of images [3]. With this technique, a series of secondary forces are applied to the
in"nite side-wall in such a manner as to impose displacement conditions equivalent to
a "nite edge [4, 5]. For a zero vertical displacement condition, forces of equal magnitude
but of opposite direction have to be applied at image positions, whereas to satisfy a zero
horizontal displacement condition the forces need to be of equal magnitude and in the same
direction. These two conditions represent a roller and a guided edge respectively, (see
Figure 1). Since a limitation of the image source technique, employing real-valued sources,
is that it cannot represent a free boundary (necessitating that both the shear and normal
stresses vanish at the edge), a roller condition is assigned to the edges of the side-wall. Whilst
strictly speaking, a free rather than a guided condition would be most applicable for the
side-wall, it is argued that, with respect to a test of the hypothesis, the use of either is valid
since di!erences between the two conditions simply manifest themselves as subtleties in the
eigenvalues of the side-wall.

For point excitation, the expression for the mobility of the "nite side-wall is
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Figure 1. Image source distribution establishing (a) the guided and (b) the roller condition.
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Without in#icting on the generality of the study, an in"nite foundation plate can be
considered appropriate for the recipient structure upon which the box is seated [6, 7]. Based
upon thin plate theory the mobility of such a plate-like recipient is given in [3] as
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Since both this mobility and that of the side-wall are de"ned for discrete positions, it is
convenient to connect the side-wall of the recipient using a series of discrete connections in
the model (see Figure 2). If the upper edge to the side-wall is also considered discretized, any
force distribution can be applied by synthesizing it from a sequence of point forces and
employing superposition theory (see again Figure 2).

Thence, connecting the side-wall and recipient plate using N points leads to the following
matrix equation:
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From the Nyquist criterion, a reliable solution for k
B
l
x
(10n can be obtained for

a discretization involving more than 10 contact points.
Upon solving equation (20) for the forces at the side-wall/receipient interface, the

velocities along the upper edge of the side-wall can be obtained from
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Figure 2. Discretisations of the line connection and force distribution.
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and subsequently the total input power is determined from
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For a square faced side-wall, attached to a thick recipient plate, the power is shown in
Figure 3 for two di!erent cases of force excitation:=

point
is for a point force positioned at the

mid-position of the side-walls upper edge and=
uniform

is for a force distributed uniformly
along this edge. For both cases, the normalization is with respect to the power that would be
manifested if the recipient plate was to be excited directly by the point force; i.e.
=="DF D2/16(Eh4

rec
o/(12(1!l2)))1@2 [3].

As can be expected, the lower asymptote is comparable for both cases and is the power
input to the directly excited recipient plate. For=

uniform
the upper asymptote is that for an

equivalent in"nite rod,=
rod

"DF D2/2SJEo, whilst for=
point

the trend for high Helmholtz
numbers is approximately a decade below this [5]. Marked di!erences between the two
cases are observed in the resonant region for =

uniform
only mimics =

point
at certain

resonances. The simple explanation for this is that a uniform force distribution can only
excite longitudinal waves whilst a point force excites both longitudinal and transverse
waves. With the current side-wall dimensions these transverse resonances are the second,
fourth, etc., seen in the point force case (for other dimensions the &&order'' of these resonances
will, of course, be di!erent). Thus, for a clear physical reason, any resonances associated
with strong transverse motion cannot be captured by using a uniform force distribution.t
This constitutes a limitation of the proposed hypothesis.

In practice, however, where the excitation will be at an interior position of the top-plate of
the box, the forces established along the upper edges of the side-walls can be expected to be
more spatially distributed than point-like. Since the spatially distributed case represents the
situation from which the hypothesis was drawn it is argued that the above point force result
represents the limiting and &&worst-case'' scenario. To provide a more representative
distribution, a top-plate should therefore be &&attached'' to the side-wall and excited at an
interior point.
tThe small &responses' seen at these resonances for the uniform load are associated with the limited number of
discretised points; if the number of points were in"nite these would be suppressed completely.
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One way to investigate the e!ect of a top-plate is to assume that it is simply supported at
all edgesA and supply the force distribution resultant along one edge to the upper edge of the
side-wall (see Figure 4). With a point force &&on'' the top-plate at (x

0
, z

0
) the force

distribution imposed upon the side-wall is then given by
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Assuming an aspect ratio of 1 : 2 for the top-plate and the excitation force at a central
position, the power transmitted at the upper edge of the side-wall, =

complete
, is shown in

Figure 5. Also shown are two estimates (=
uniform

(k) and=
uniform

) based upon uniform force
distributions. The di!erence between the two estimates is that for =

uniform
(k) the spatial

average of the complete force distribution is calculated as a function of wavenumber
k whilst for=

uniform
this spatial average is simply assigned the value obtained from the static

case.=
uniform

is therefore invariant with wavenumber. As before, all results are normalized
with respect to the power input to the point-excited recipient plate.

For low Helmholtz numbers the asymptotic trend is towards the normalization factor
whilst for higher Helmholtz number a succession of resonances are displayed. Below
ASuch a condition approximates to that observed experimentally [8, 9].



Figure 4. A force distribution from a simply supported top-plate imposed onto a side-wall.
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kside
L
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"n/2 these resonances are only associated with the top-plate, whilst above, some are

also associated with the side-wall.=
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reveals which of these are allied with longitudinal
waves. It is suggested that =
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equals the quasi-longitudinal wavelength; i.e., the resonance where the wave retraces itself in
the &&left/right'' direction. Physically, this marks the transition from the force distribution
being &&quasi-static'' to it being &&wave-like''. Thus, a criterion for the estimate to be reliable is
when the longitudinal wavelength is less than the width of the side-wall. For an elongated
side-wall where, for example, l

x
/l

y
"3, the limit of reliability is therefore at a lower

Helmholtz number and falls at k side
L

l
y
"2n/3 (see Figure 6).

With the square-faced side-wall, the &&reliable'' range was seen to include the "rst
transverse resonance of the side-wall. This is of much interest, for it suggests that low order
transverse waves are not excited signi"cantly when the force along the upper edge of the
side-wall is spatially distributed and &&quasi-static''. For this condition, it is clearly of interest
to consider the excitation force at positions closer to the side-wall, whereby the closer the
force to the edge the more &&spatially concentrated'' the force distribution, the limiting case
being, of course, direct point excitation of the side-wall as in Figure 3. Hence, for the force at
positions (0)5 l

x
, 0)25 l

z
) and (0)5 l

x
, 0)1 l

z
), Figures 7 and 8 are obtained.

Considering the maxima, both results again suggest that the approximate solution
=

uniform
(k) is reliable for Helmholtz numbers up to that wavenumber where the width of

the side-wall equals the quasi-longitudinal wavelength; i.e., even at the &troublesome'
transverse resonance of the side-wall=

uniform
(k) is within a decade of=

complete
. Although the

discrepancies are greater at the minima it can be argued that for engineering practice this is
of limited consequence, the argument being, that the primary aims of such analyses are
establishing the dominant resonances and estimating the power transmission. From the two
Figures the signi"cant observation is, therefore, that the reliability of=

uniform
(k) appears to

be &&insensitive'' to the proximity of the input force relative to the edge of the side-wall.
Although in this respect Figure 8 is encouraging, some caution should, of course, be
exercised with this statement in view of Figure 3.

In order to study the in#uence of the loss factor, Figure 9 is presented. The result can be
compared with Figure 5 since both are obtained for the same system but with di!erent loss
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factors: a value of 0)0001 for Figure 5 and a value of 0)01 for Figure 9. Whilst in Figure 9 the
resonance peaks are, as can be expected, smaller, =

uniform
(k) remains reliable up to that

wavenumber where the width of the side-wall equals the quasi-longitudinal wavelength. It is
indicated therefore that the accuracy of =

uniform
(k) is insensitive to the loss factor.
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3. POWER TRANSMISSION FOR A BOX

In a similar manner, a complete box can be constructed by connecting four side-walls
to the recipient plate and imposing a force distribution upon the upper edge of each
side-wall under the assumption that the distribution is that of a simply supported
top-plate (see Figure 10). The fact that a force distribution on the upper edge of the
side-walls is applied directly means that the model does not have to include structural
coupling between these edges via the top-plate. Also, since a roller condition is imposed at
the vertical edges of the side-walls, there is no transfer of vibrational power across these
(vertical) boundaries either. However, coupling between the side-walls via the recipient plate
is present.

With reference to Figure 11 the matrix equation to be solved for the forces along the
box/recipient interface is
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Figure 10. The box attached to an in"nite plate recipient.

Figure 11. Discretization of edge connections along the box (shown folded out).
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where [YL
srmm

] is a sub-matrix designating the summation of the side-wall and recipient
mobilities at the lower edge of side-wall m. It is given by
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where N is the number of points in the discretization along each edge.
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Similarly, [YL
rmm

] is a sub-matrix describing the transfer mobilities of the recipient
between the lower edges of side-walls m and n. [YUL

smm
] constitutes the transfer between

the upper and the lower edges of side-wall m. [FU
mm

] and [FL
mm

] de"ne the forces
at the upper and lower edges respectively of side-wall m with [FU
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] derived from

equation (23).
The dimension of the system of equations is (4N, 4N) and to satisfy the Nyquist

criterion for k
B
l
x
(10n, equation (24) will involve the accumulation of 1600 mobilities

and then, formally, an inversion of a 40]40 matrix. Although by using reciprocity and
symmetry the number of individual mobilities can be reduced to 400 the mechanics of
the calculation remain considerable and highlights the real need to develop a simpli"ed
model.

The "rst box considered is con"gured with a top-plate of aspect ratio 1 : 2, facing
side-walls of aspect ratio 1 : 1 and a thick recipient plate. With point excitation
at the mid-position of the top-plate the complete transmitted power through the upper edge
is shown in Figure 12, along with the=

uniform
(k) and=

uniform
estimates. Except for a large

discrepancy just below the "rst transverse mode,=
uniform

(k) is found to describe reliably the
transmission for Helmholtz numbers up to that wavenumber where the width of the longest
side-wall equals the quasi-longitudinal wavelength, i.e., kside

L
l
y
"n. The applicable range is

therefore similar to that seen for a single side-wall.
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o!-centre position (0)4 l
x
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). Again,=

uniform
(k) is observed to provide reliable results up

to that wavenumber where the width of the longest side-wall equals the quasi-longitudinal
wavelength.
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3.1. SOLUTION USING EFFECTIVE STRIP MOBILITIES

For all the above models the approximate results have been based upon reducing the
&&true'' force distribution along the upper edge(s) of the side-wall(s) to a uniform
distribution. A further step to take is, of course, also to reduce the force distribution along
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the lower edge(s) of the side-wall(s) to a uniform one. One signi"cance of this advance is that
it permits the box to be modelled via an e!ective strip mobility formulation [9, 10] where, in
essence, an e!ective strip mobility is (in a spatial context) an &&overall''mobility. It is realized
by assuming a distribution for the force. For the box, the e!ective strip mobilities, >R, are
de"ned as

>RUL
srmm

"P
lx,z

0
P

lx,z

0

>U,L
s,rmm

(x, z
1
Dx, z

2
)Lx, z

1
Lx, z

2
, (26)

where >U,L
s, rmm

(x, z
1
Dx, z

2
) is the mobility at either the upper or lower edge of side-wall m in

direction x or z as appropriate and where the assumed force distribution is uniform.
A consequence of its de"nition is that the e!ective strip mobility is analogous to the point

mobility. In a formulation based upon this, each edge of the side-walls the box can therefore
be considered to be connected to the top-plate and the recipient plate at single &&points''.
A solution to the box is thus forthcoming upon solving only for four unknown forces*one
for each of the lower edges of the side-walls; that is
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(27)

Though closed-form expressions for many of the e!ective strip mobilities involved are
given in Appendix A, expressions are missing for the e!ective strip transfer mobilities of the
recipient plate. For these, the troublesome integrals can, however, be computed using
a straightforward numerical routine.

In order to assess the implications of employing uniform force distributions throughout,
Figure 15 is shown which can be compared with Figure 12 since both arise from the same
con"guration of box. Any di!erences between =

effective
and =

uniform
(k) are thus seen to

be negligible. This suggests therefore that for a wide range of Helmholtz numbers, a reliable
estimate of the power can be obtained assuming a uniform force distribution at both the
upper and lower edges of the side-walls.

4. CONCLUDING REMARKS

The power transmitted "rst for a "nite side-wall and then for a box-like structure
connected to an in"nite recipient plate has been studied. The side-wall(s) were assumed to
carry in-plane motion only and to have a roller condition along their vertical edges.

A realistic distributed force was applied to the upper edge of the side-wall(s) and the
forthcoming complete solution was compared with approximate solutions. The
approximate solutions were obtained by imposing uniform force distribution(s) "rstly along
the upper edge of the side-wall(s) and then also along the lower edge.

When the spatial average of the exciting distributed force is known as a function of
wavenumber, the forthcoming approximate solution is reproducing the power transmission
reliably for all wavenumber up to that wavenumber where the width of the longest side-wall
equals the quasi-longitudinal wavelength. A proviso, however, is that the excitation of the
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top-plate is such that the resulting exciting force distribution has a signi"cant uniform
component. This means that excitation positions close to the edges or corners of the
top-plate can be handled but not positions actually at the edges. Discrepancies associated
with shear resonances can, for example, be expected where the exciting force &&distribution''
is a point force applied directly to the upper edge of the side-wall.

When it is assumed that the force distribution along the lower edge is also uniform, an
e!ective strip mobility formulation can be assumed in the same range. This reduces the
mathematical description of the box to a simple set of linear equations involving only four
unknown forces; one force per lower edge. If closed-form expressions for all the e!ective
strip mobilities can be obtained this will therefore lead to simpli"ed procedures for
estimating the power transmission in box-like systems for wavenumbers below that
wavenumber where the width of the longest side-wall equals the quasi-longitudinal
wavelength.

In Part II of this two series paper, further simpli"cations applicable to the estimation of
vibrational power in built-up structures are to be presented. These simpli"cations include
the introduction of an in"nite top-plate and the possibilities of reducing the &&box'' to
a &&can'' with circular geometry. Final comparisons with experimental data will be shown.

ACKNOWLEDGMENTS

The authors are grateful to Dr C. deJong and Mr F. v.d. Knaap, TNO Institute of
Applied Physics, Netherlands for their constructive criticism on the work.

REFERENCES

1. R. A. FULFORD and B. A. T. PETERSSON 1999 Journal of Sound and <ibration 227, 479}510. The
role of moments on the vibration transmission in built-up structures, Submitted.



UNIFORM FORCE DISTRIBUTIONS 893
2. B. A. T. PETERSSON 1992 ¹NO Institute of Applied Physics, ¹PD-HAG-RP¹-92-227. Point
mobilities of column seatings: theoretical basis and developments with respect to axial force
excitation.

3. L. CREMER, M. HECKL and E. UNGAR 1973 Structure-Borne Sound. Berlin: Springer-Verlag,
(second edition).

4. R. GUNDA, S. M. VIJAYAKER and R. SINGH 1995 Journal of Sound and <ibration 185, 791}808.
Method of images for the harmonic response of beams and rectangular plates.

5. S. H. LIU 1996 Ph.D. ¹hesis,;niversity of Southampton. In-plane and #exural vibration in built-up
plate structures.

6. E. NIJMAN, B. A. T. PETERSSON and F. VAN KNAAP 1992 ¹PD-HAG-RP¹-92-201.¹NO Institute
of Applied Physics, Department of Ship Acoustics. An experimental study of the dynamic
characteristics of full-scale ship double bottom structures.

7. F. J. FAHY and M. E. WESTCOTT 1978 Journal of Sound and<ibration 57, 101}129. Measurements
of #oor mobility at low frequencies in some buildings with long #oor spans.

8. B.A.T. PETERSSON 1993 ¹PD-HAG-RP¹-93-0157, ¹NO Institute of Applied Physics.
Preliminaries for pure transfer mobilities: beam- and frame-like structures.

9. B. A. T. PETERSSON and J. PLUNT 1980 Report 80}19, Department of Building Acoustics, Chalmers
;niversity of ¹echnology, Sweden. Structure-borne sound transmission from machinery to
foundations.

10. P. HAMMER and B. PETERSSON 1988 Journal of Sound and <ibration 129, 119}132. Strip
excitation; Part I: strip mobility.

APPENDIX A: EXPRESSIONS FOR THE EFFECTIVE STRIP MOBILITIES

For side-walls, closed-form expressions for the e!ective strip mobilities are given as
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For the receiver plate, the e!ective point strip mobilities, obtained from reference [10],
are
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Closed-form expressions for the e!ective strip transfer mobilities of the recipient are
however di$cult to develop due to the complicated function for the response position.
However, these can instead be computed via a numerical integration routine based upon
the following:

>RL
r12

">RL
r23

">RL
r34

"

u
8Bk2

B
P

lx

0
P

lz

0

[H(2)
0

(k
B
r)!H(2)

0
(!ik

B
r)] dzdx, (A7)

where r"J(l
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APPENDIX B: NOMENCLATURE

B bending sti!ness
C wavespeed
D modulus of elasticity
E Young's modulus
F force
G modulus of rigidity
H Hankel function
¸ length
Q complex power
S area
< velocity in the y direction
= transmitted power
> mobility
f component of force
h thickness
i imaginary unit
k wavenumber
l linear length
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r radical length
t time
u displacement in the x direction
v displacement in the y direction
x, y, z Cartesian co-ordinates
/ dilatation
t rotation
g loss factor
l Poisson's ratio
p normal stress
q shear stress
u angular frequency

Indices

B bending wave
¸ longitudinal wave
¸ lower edge of side-wall
¹ transverse wave
; upper edge of side-wall
av spatial average
r, rec recipient plate
s, side side-wall
top top-plate
R e!ective mobility
U real part
W imaginary part

Notation

* complex conjugate
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